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Abstract Finite difference method (FDM) combined with MacCormack’ s predictor-corrector scheme is used to
solve the problem of hyperbolic heat conduction in a finite medium. One of its boundary surfaces is heated by a rectan-
gular pulsed energy source while the other surface is tightly contacted with another medium where the continuous bound-

ary condition is satisfied. Some non-Fourier heat conduction behaviors have been analyzed theoretically.
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The non-Fourier heat conduction phenomenon observed in many medial’ ~*! has potential uses in
many engineering processes, such as rapid melting and solidifying of metal, surface heat treatment
with laser, temperature controlling of superconductors, handling of the accident of nuclear device,
laser surgery in biomedical engineering and impulse drying. There is still much work to do before we

make use of the non-Fourier heat conduction in engineering areas.

In this paper, the hyperbolic heat conduction (HHC) model is chosen to analyze one special
non-Fourier heat conduction case, in which one of the boundary surfaces of a finite medium is heated
by a rectangular pulsed energy source and the other boundary is tightly contacted with another medium
where the continuous boundary condition ( the fourth kind of heat transfer boundary condition) is satis-
fied.

Some theoretical analyses'*’ 3 and experimental studies!'’ of non-Fourier heat conduction indi-
cate that the evident non-Fourier heat conduction behavior can only exist in a very thin layer of the
medium and the heat transfer in the other part of the medium still complies with the Fourier law per-
fectly. In the interface of those two parts, the 4th kind of boundary condition should be satisfied.
Therefore the problem studied in this paper is relevant to practical engineering and the result will have
great application values. Obviously, it is difficult to obtain an analytical solution of this kind of non-
Fourier heat conduction problem because of its extreme complexity. Numerical solution with finite dif-
ference method (FDM) will be found out for the numerical difference of the hyperbolic heat conduc-

(6]

tion equation, where the MacCormack’ s predictor-corrector scheme'®’ is used to deal with the numeri-

cal formulation. The results will reveal some non-Fourier heat conduction behaviors in the medium.
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1 Formulation
1.1 1-D physical model

A finite medium, O #,< &, is placed on a large base, O< x, < ! (Fig. 1). Both the finite
medium and the base are initially at temperature Rectangular pulsed
Tyy, 0= Tb(xh,O) = T,(the room temperature) . For energy source
time ¢t >0, the boundary surface at x, = 0 is heated s l l l Sample

by a rectangular pulsed energy source and the bound-

ary surface, x, = &, is tightly contacted with the
base’s boundary surface, x, =0, where the 4th kind !
of boundary condition is satisfied, while the other

boundary surface of the base, x), = [, is kept insulat- * \
ed.

Base

1.2 Governing equations X
Fig. 1 Computational model.

The heat transfer in the sample (finite medium)
is considered as the non-Fourier heat conduction and the hyperbolic heat conduction model is em-
ployed to describe it, while the heat transfer in the base is still governed by the Fourier law and the
classical parabolic heat conduction model is used. The governing equations including the initial and

boundary conditions can be obtained as follows.

1.2.1 For the sample. The governing equations for heat transfer in the sample can be expressed

as
3qs(x, 1) aTs(:c, 1)
TT'*'qs(x!,t) =_As__a_ar’ (0< xs < 8)’ (1)
a(Is(x, t) aTS(x. t)
Tz_(pCP)ST’ (0<%, <8), (2)

S

where the thermal relaxation time r (or thermal characteristic time for porous material) is defined as

8

a
T =—;. a,is the thermal diffusivity of the sample and c the velocity of the propagation of thermal
c

disturbance in the sample.

The initial conditions are

Tyesor = Tor (0 < 5, < 8), 3)
qs(x!, 0) = 0, (0 < Xy < 6) (4)

It is necessary to describe two boundary conditions at the interface of the sample and the base
because both the temperature and the heat flux at the interface are unknown. The continuities of tem-

perature and heat flux at the interface must be employed together. So the boundary conditions are
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gs(0,:) = G0 ° U(t)’ (5)
455, ) = 9bi0. 1) (6)
Tys, v = Two, o- (7)

In Eq. (5), gqq is the heat flux density of the rectangular pulsed energy source and the U,) denotes
a unit pulsed function and can be expressed as

0 t <0,
Uy =41 Ost<ty,
0 E> Ly,

where ¢, is the pulse duration of the rectangular pulsed energy source.

1.2.2 For the base. The heat transfer in the base is governed by the Fourier law and the govern-

ing equations can be written as

aTb(xh, t)

qb(xb, ) =7 Ab axb ’ (0 < %xp < l)) (8)

IGy(x, o) IThx, o)
T =_(pcP)ba_):’ (0 < x, < ). (9)

Initial conditions are
Tb(xh, o = To» 0, < 1), (10)
0,0 = 0, (0 2, < 1), (11)
and the boundary conditions are

g0, ) = 9s(a8, 0)» (6)
Tb(O, ) = Ts(&, 1) (7)’
qu1, ) = 0. (12)

1.3 Numerical analysis

Finite difference method (FDM) is used to numerically analyze the aforementioned thermal case.
The numerical treatment of Eqs. (1) ~ (12) is routine, so it is omitted here.

The network of grid points of the sample and the base is shown in Fig. 2. For this sample, there
are M +1 (from 0 to M) nodal points for the temperature T, and M + 2 (from O to M + 1) nodal
points for the heat flux density q,. The base has N + 1 (from 0 to N) nodal points for its temperature
T, and N + 2 nodal points for its heat flux density ¢, .
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Fig. 2 Network of grid points for numerical analysis of the sample and the base. (a) For the sample; (b) for the base.
1.4 MacCormack’s P-C method

In order to handle the sharp discontinuities at the wave front with high resolution and small oscil-

lation, the MacCormack’ s predictor-corrector scheme!®]

is used to improve the obtained numerical
equations in subsec. 1.3. The MacCormack’s predictor-corrector method can be illustrated with the

following example .

If a numerical formulation is expressed as F'*' = H', then the predictor is formulated as Fitl
= H' and the corrector can be written as F'*1 = (F' + FI”I)/Z.

For example, the numerical form of Eq. (1) is

i+ _ qis,m Tis,m- Tis, m—l.g
Gom = Go,m — DL T = A, Ax, —» m € [1, M]. (13)

Here the grid points are identified with m and i, m being the number of x,-increments and i

the number of time ¢-increments.
Its predictor and corrector can be expressed as follows.

The predictor is

~; ; : T =T w1 At
i+l _ i _ 95, m _ s, m s, m-1 1
qs, m = qs, m At T As Axs r ’ (14)
and the corrector is
. ' _ =i Ti _Ti . At
i+1  _ i i _ ds, m _ s, m s, m-1 Db o) 1
Gom = |95, m+ 05, mn = DL A A — 172 (15)

8

After the predictor and corrector expressions of all numerical formulations have been obtained,
the iteration process can be started and the temperature variation at any position of the sample can be

obtained .
2 Results and discussions

With the non-Fourier heat conduction behavior in the sample in mind, attention is p aid to the
temperature variation at the interface. The effects of the parameters 1,/4,, (pcp)b/ (pcp)s, Ty Ly
go and x, on the temperature variation are carefully examined. The parameters needed in numerical

computation are shown in Table 1.
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Table 1 Assumed parameters in computational process

s 1 A/W AW (pey). (e T % o T N At/ps
Jpm /mm @K' m K /kem KTk mm KT Zps MWem 2 ps /K

— (a) 25 24 100 120 2000 2500 5 20 5 20 10 30 0.00003
Fig: 3 () 25 24 100 100 2000 2000 10 20 5 20 10 30 0.00003
Fig. 4 25 24 100 120 2000 2500 - 20 5 20 10 30 0.00003
(@) 25 24 100 _9 2000 2500 10 20 5 20 10 30 0.00003
Fig:- 5 (py 25 24 100 120 2000 _w 10 20 5 20 10 30 0.00003
@ 25 24 100 120 2000 2500 5 -9 5 20 10 30 0.00003
Fig- 6 (1) 25 24 100 120 2000 2500 5 -9 _9 20 10 30 0.00003

a) The value of the parameter can be found out in the corresponding paper.

Figure 3(a) shows the temperature variation at different positions (x,=0, x,=6/2, x,=8)
in the sample. It can be easily discovered that the thermal propagation in the sample, predicted by
the HHC model, deviates evidently from the classical thermal diffusion and shows some wave nature.
With increasing x,, the varying amplitude of temperature attenuates. The maximum temperature
change in the medium is much larger than that predicted by the Fourier law. During some time period
and at certain position in the sample, the temperature may be higher than that of the heated surface
(x,=0). For example, during 17 ~ 19 microseconds in Fig. 3(a) the temperature at x, = §/2 is

higher than that at x, = 0. The temperature variation shows typical non-Fourier heat conduction be-

havior.
180 2501
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< 801 <
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Time/us Time/us
Fig. 3 Temperature variation in the sample. (a) The sample and the base have different thermal properties; (b) the
sample and the base have uniform thermal properties. —, HHC; - - - PHC.

Figure 3(b) shows a very special and interesting case. The thermal properties (heat conductivity
and volumetric heat capacity) of the sample and the base are uniform, i.e. they are the same kind of
material . The interface between them is just imaginary. Non-Fourier heat conduction behavior in the
sample is still very evident. This case may be very common in practical engineering because the non-
Fourier heat conduction behavior can only exist in a very thin layer near the thermal disturbance and
it is unlikely to influence the whole macroscopic object. For this case the method used here is effec-
tive. We might define the area where the non-Fourier heat conduction prevails as “the thin layer of
non-Fourier heat conduction” . The thickness of this layer is very important in the practical application
of non-Fourier heat conduction. It is worthwhile to further study this problem in the future.

The effect of z on the temperature variation in the interface is shown in Fig. 4. The larger the T

is, the more significant the non-Fourier heat conduction in the sample will be. When z equals 2 ps,
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24+ the temperature variation in the interface is nearly

%: comparable with that computed by the PHC model.

%2: This indicates that v is an important factor to deter-

2 4t mine whether the non-Fourier heat conduction behav-
S }g: iors are significant or not.

2- The thermal properties of the base also have sig-

; nificant influences on the temperature of the sample.

_g- \ . . B ‘  Fig. 5 (a) and (b) show the effects of A,/A, and

0 20 '?i(:ne/us 60 80 100 (pc p)b/ ( pcp)s on the temperature of the interface, re-

spectively. The larger either one of the two ratios is,

Fig. 4 Effect of T on the temperature of the interface. . . .
HHC. - PHC the weaker the non-Fourier heat conduction behavior
is. This result suggests that if a weaker non-Fourier heat conduction behavior is expected for the sam-

ple, a base that has a larger heat conductivity and heat capacity should be put under the sample.

25¢

201

AT/IK
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Time/us Time/us

Fig. 5 Influences of the thermal properties of the base on the temperature of the interface. (a) Effect of A,/A,; (b)

effect of (pcp)b/(pcp)s. In (a) —, Ay A, =025 - — -, A,/A,=1.25 --—--- , Ay/A,=5. In (b) (pcp)s/pcp)s

=0.1; - - =, (pep)ylpe,),=1.255 ----- s Coep)/(pe,), =5,

The effect of the intensity ¢, of the rectangular pulsed energy source on the non-Fourier heat
conduction behavior is shown in Fig. 6(a). With an increase in the pulsed energy source’s intensity,

the fluctuation amplitude of the temperature becomes greater.

The pulse duration ¢, of the pulsed energy source reflects the instantaneity of the thermal distur-
bance. Generally speaking, the shorter the ¢, is, the stronger the instantaneity of the pulsed energy
source will be and the non-Fourier heat conduction behavior in the sample will be more evident. Fig.
6(b) testifies this point. It can be discovered from Fig. 6(b) that when t, equals 50 microseconds,

the temperature variation of the interface shows little deviation from that predicted by the PHC model.
3 Conclusions

In this paper, non-Fourier hyperbolic heat conduction in a finite medium restricted by the 4th
kind of boundary condition is numerically solved with the FDM combined with the MacCormack’s pre-

dictor-corrector method. The non-Fourier heat conduction behaviors in the sample are carefully stud-
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Fig. 6 Influences of the parameters of thermal disturbance on the temperature of the interface. (a) Effect of g4; (b) ef-
fect of t,. —, HHC; - - -, PHC.

ied. The results show that the smaller x,, A,/4,, (pcp)b/( pcp)s are, the shorter 7, ¢, are, and the
greater g is, the stronger the non-Fourier heat conduction behaviors are. Conclusions can be drawn

as follows.

(i) In practical engineering, the heated material is given, i.e. 7, A and pc, are all constant,
the non-Fourier heat conduction behavior in the material can be controlled by controlling g¢ and ¢,.
For example, in some laser surgeries, a stronger non-Fourier effect is expected, so a laser pulse with
short duration and high intensity can be chosen as the heating source. On the other hand, in some
surface heat treatments, a weaker non-Fourier effect is expected, so a weaker laser pulse with long

duration or a continuous laser beam is the most suitable choice.

(ii) A temperature control method is suggested based on the relation of the non-Fourier heat con-
duction behavior in the sample and the base’s thermal properties. For example, if some weaker non-
Fourier heat conduction is expected in the sample, a base that has a greater heat conductivity and vol-

umetric heat capacity can be put under it.

(iii) The physical model discussed in this paper has a wide application in practical engineering .

(iv) The non-Fourier temperature variation obtained in this paper is similar to the experimental
result reported in Ref. (1] qualitatively .
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